Core java notes by madhu..

Java Introduction :

Author James gosling

Vendor Sun micro system

Project name Green project

Type Open source and free software
Intial name Oak language

Present name Java

Intial version Jdk 1.0

Latest version Jdk 1.8

Objective To develop any kind of applications
Slogan Wora(write once run any where)

Example java program :

package com.madhu.basics;

public class Sample {

public static void main(String[] args) {

13

Compilation : javac Sample.java

Execution

Output

Importance

D
2)
3)
4)
5)
6)
)
8)

Java i

Java

Java

Java

Java

Java

Java

Java

System.out.println(*"Techfort software servcies pvt 1td");

. java

Sample

: Techfort software services pvt ltd

of core java :

used to

Used to

Used to

Used to

Used to

Used to

Used to

used to

develop
Develop
Develop
Develop
Develop
Develop
Develop

Develop

Desktop Applications such as MediaPlayer,Antivirus etc.
Web Applications such as gmail.com, irctc.co.in etc.
Enterprise Application such as Banking applications.
Mobile Applications.

Embedded System.

SmartCards.

Robotics.

Games etc.

Java Versions :

Java Versions Year
Jdk Alpha & Beta 1995
Jdk 1.0 1996
Jdk 1.1 1997
J2se 1.2 1998
J2se 1.3 2000
J2se 1.4 2002
J2se 1.5 2004
Jse 6 2006
Jse 7 2011
Jse 8

Parts of java language :

Generally there is no core java and advanced java in java.

As per the sun micro system standard the java language is divided into three types.
1) J2SE/JSE(java 2 standard edition)

2) J2EE/JEE(Java 2 enterprise edition)

3) J2ME/JIME(Java 2 micro edition)

J2SE: -

By using j2se we are able to develop the standalone applications.

Ex:- notepad, WordPad, paint, Google Talk......etc

Standalone applications:-

1) Standalone applications are the java applications which don’t need the client
server architecture.

2) The standalone applications applicable for the only one desktop hence it is called
desktop applications or window based applications.

J2EE:-

By using j2ee we are able to develop the web based applications.

Ex:- Gmail, yahoo mail, bank, reservation..... etc

Web-applications: -

1) Web applications are the java applications which needs client and server concept.

2) Web applications must need the internet connections to access the application.

J2ME: -

By using j2me we are able to develop the applications that applications only run on
mobile devices.

Differences between c, cpp and java :

S no C language Cpp language Java language

1 The program execution The program execution The program
starts from main method starts from main method execution starts
and main method is called | called by operating from main method
by Operating system. system. called by JUVM (Java

virtual machile).

2 In the c-language the In the cpp language the In the java language
predefined support is predefined is maintained | the predefined is
maintained in the form of | in the form of header maintained in the
header files files. form of packages.
Ex:- stdio.h,conio.h Ex:- iostream.h Ex:- java.lang,

java.io, java.net,
Java.awt

3 the header files contains | The header files The packages
predefined functions. contains predefined contains predefined
Ex:- printf,scanf functions. classes.

Ex:- cout,cin Ex:- String,System

4 To make available To make available To make available
predefined support into predefined support into predefined support
our program we have to our program we have to into our program we
use #include statement. use have to use
Ex:- #include<stdio.h> #include statement. import statement.

Ex:- #include<iostream> Ex:- import
java.lang.*;

Java Features :

1. Simple:-

Java is a simple programming language because:

Java technology has eliminated all the difficult and confusion oriented concepts
like pointers, multiple inheritance in the java language.

The c,cpp syntaxes easy to understand and easy to write. Java maintains C and CPP
syntax mainly hence java is simple language.

Java tech takes less time to compile and execute the program.

2. Object Oriented:-

Java is object oriented technology because to represent total data in the form of
object.

By using object reference we are calling all the methods, variables which is present
in that class.

The total java language is dependent on object only hence we can say java is a object
oriented technology.

3. Platform Independent :-

Compile the Java program on one 0S (operating system) that compiled file can execute
in any OS(operating system) is called Platform Independent Nature. The java is
platform independent language. The java applications allows its applications
compilation one operating system that compiled (.class) files can be executed in any
operating system.

4. Architectural Neutral:-

Java tech applications compiled in one Architecture (hardware----RAM, Hard Disk) and
that Compiled program runs on any hardware architecture(hardware) is called
Architectural Neutral.

5. Portable:-

In Java tech the applications are compiled and executed in any OS(operating system)
and any Architecture(hardware) hence we can say java is a portable language.

6. Robust:-

Any technology if it is good at two main areas it is said to be ROBUST
1 Exception Handling

2 Memory Allocation

JAVA is Robust because

a. JAVA is having very good predefined Exception Handling mechanism whenever we are
getting exception we are having meaning full information.

b. JAVA is having very good memory management system that is Dynamic Memory (at
runtime the memory is allocated) Allocation which allocates and deallocates memory
for objects at runtime.

7. Secure:-

To provide implicit security Java provide one component inside JVM called Security
Manager .

To provide explicit security for the Java applications we are having very good
predefined library in the form of java.Security.package.

Web security for web applications we are having JAAS(Java Authentication and
Authorization Services) for distributed applications.

8. Dynamic:-

Java is dynamic technology it follows dynamic memory allocation(at runtime the memory
is allocated) and dynamic loading to perform the operations.

9. Distributed:-

By using JAVA technology we are preparing standalone applications and Distributed
applications.

Standalone applications are java applications it doesn’t need client server
architecture. web applications are java applications it need client server
architecture.

Distributed applications are the applications the project code is distributed in
multiple number of jvm’s.

10. Multithreaded: -
Thread is a light weight process and a small task in large program.

If any tech allows executing single thread at a time such type of technologies is
called single threaded technology.-

If any technology allows creating and executing more than one thread called as
Multithreaded technology called JAVA.

11. Interpretive:-

JAVA tech is both Interpretive and Completive by using Interpretator we are
converting source code into byte code and the interpretor is a part of JVM.

12. High Performance:-

If any technology having features like Robust, Security, Platform Independent,
Dynamic and so on then that technology is high performance.

Install the software and set the path :-

Download the software from internet based on your operating system. The software is
different from 32-bit operating and 64-bit operating system.

To download the software open the fallowing web site.
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
for 32-bit operating system please click on Windows x86 :- 32- bit operating system

for 64-bit operating system please click on Windows x64 :- 64-bit operating system

After installing the software the java folder is available in the following location

Local Disk c: program Files--java--jdk(java development kit), jre(java runtime
environment)

To check whether the java is installed in your system or not go to the command
prompt. To open the command prompt

Start -- run-- open: cmd -- ok
Command prompt is opened.
In the command prompt type :- javac

“jJavac’ is not recognized is an internal or external command, operable program or
batch file.

Whenever we are getting above information at that moment the java is installed but
the java is not working properly.

C:/>javac
Whenever we are typing javac command on the command prompt

1) Operating system will pickup javac command search it in the internal operating
system calls. The javac not available in the internal command list .

2) Then operating system goes to environmental variables and check is there any path
is sets or not. up to now we are not setting any path. So operating system don’t know
anything about javac command Because of this reason we are getting error message.

Hence we have to environmental variables. The main aim of the setting environmental
variable is to make available the fallowing commands javac,java,javap (softwares) to
the operating system.

To set the environmental variable:-

My Computer (right click on that) — properties — Advanced -- Environment Variables---
User variables — new -- variable name : Path

Variable value : C:\programfiles\java\jdkl1.6.0 11\bin;.; --ok -- ok

Now the java is working good in your system. open the command prompt to check once

C:>javac ---- now list of commands will be displayed

Class Contains Five elements:-

Class Test

{

1. variables

2. methods

3. constructors

4. instance blocks

5. static blocks

}

Main Method:- Public static void main(String[] args)
Public :- To provide access permission to the jvm declare main is publc.

Static :- To provide direct access permission to the jvm declare main is static(with
out creation of object able to access main method)

Void :- don’t return any values to the JVM.

String[] args :- used to take command line arguments(the arguments passed from
command prompt)

String represents possible to take any type of argument.
[1 represent possible to take any number of arguments.

Tokens :- Smallest individual part in a java program is called Token. It is possible
to provide any number of spaces in between two tokens.

Ex:-

Class Test

{

Public static void main(String[] args)
{ int a=10;

System.out.printIn(*“java tokens™);

}

}

Tokens are -- class,test,{,”,[@ --———-——- etc

Print() vs Println ():-
Print():-

Print is used to print the statement into the console and the control is available in
the same line.

Ex:-

System.out.print(“Techfort™);
System.out.print(“softwate services pvt 1td”);
Output:- Techfort software services pvt Itd
PrintIn(Q):-

In the println statement Print is used to print the statement into the console and In
represent go to the new line now the control is available in the next line.

Ex:-
System.out.println(“Techfort™);
System.out.printIn(“software services pvt 1td”);
Output:- Techfort

Software services pvt Itd
ldentifiers:-

Any name in the java program like variable name,class name, method name, interface
name is called identifier.

Ex:-
class Test

{

void add()
{

int a=12;
int b=13;
}

}

Test, add, a, b are identifiers

Java Naming Conventions :-
Java is a case sensitive language so the way of writing code is important.

1. All Java classes, Abstract classes and Interface names should start with uppercase
letter ,if any class contain more than one word every innerword also start with
capital letters.

Ex:- String
StringBuffer

2. All java methods should start with lower case letters and if the method contains
more than one word every innerword should start with capital letters.

Ex :- post()
toString()
toUpperCase()

3. All java variables should start with lowercase letter and inner words start with
uppercase letter.

Ex:- pageContent
bodyContent
4. All java constant variables should be in uppercase letter.
Ex:- MIN_PRIORITY
MAX_PRIORITY
NORM_PRIORITY
5. All java packages should start with lower case letters only.
Ex:- java.awt
Java.io
Java Comments :-
To provide the description about the program we have to use java comments.
There are 3 types of comments present in the java language.
1) Single line Comments:-

By using single line comments we are providing description about our program within a
single line.

Starts with // (double slash)

Syntax:- //description
2) Multi line Comments:-
This comment is used to provide description about our program in more than one line.

Syntax:- /... .line-1

*/

3) Documentation Comments:-

This comment is used to provide description about our program in more than one page.
In general we are using document comment to prepare APl kind of documents but it is
not suggestable.

Syntax:- /... .line-1

*/

Control statements :-

There are 2 types of statements in java :

Conditional statements

Iteration statements

Conditional statements : if, if-else, switch

If syntax:-

if (condition)

{

Statements;

}

The curly brasses are optional whenever we are taking single statements.
The curly brasses are mandatory whenever we are taking multiple statement.
Ex:-

class Test

{

public static void main(String[] args)

{

int a=10;

if (a>5)

{

System.out.printIn(""if body / true body™);
}

}

}

If-else syntax:-
if (condition)
{

if body; (true body)

}

else

{

else body; (false body)

}

The curly brasses are optional whenever we are taking single statements.

The curly brasses are mandatory whenever we are taking multiple statements.

Ex:-

class Test

{

public static void main(String[] args)
{

int a=10;

int b=20;

it (a<b)
{

System.out.printIn(""if body / true body™);

}

else

{

System.out.printIn("else body/false body ");

}
System.out.printIn(’hi madhu');
}
}

Switch statement:-
1) Switch statement is used to take multiple selections.
2) Curly brasses are mandatory if we are not taking we are getting compilation error.

3) Inside the switch It is possible to declare any number of cases but is possible to
declare only one default.

4) Switch is taking the argument the allowed arguments are

a. Byte
b. Short
c. Int
d. Char

e. String (allowed in 1.7 version)

5) Float and double and long is not allowed for a switch argument because these are
having more number of possibilities (float and double is having infinity number of
possibilities) hence inside the switch statement it is not possible to provide float
and double and long as a argument.

6) If the case is matched particular case will be executed if there is no case is
matched default case is executed.

Iteration Statements:-

If we want to execute group of statements repeatedly or more number of times then we
should go for iteration statements.

Three types of iteration statements present in the java language :
1) for
2) while

3) do-while

for syntax:-

for (part 1l;part 2 ;part 3)

{

Body;

}

Ex:- for (initialization ;condition ;increment/decrement)
{

Body;

}

1) The for loop contains three parts initialization, condition, increment/decrement
part.

2) Each and every part is separated by semicolon and it is mandatory.
The curly brasses are optional whenever we are taking single statement.

The curly brasses are mandatory whenever we are taking more than one statements.

Ex:-

class Test

{

Public static void main(String args[])
{

for(int i1=0;i<5;i++)

{

System.out.println(“Techfort software services pvt 1td”);

3
1
3
Do-While:-

1) If we want to execute the loop body at least one time them we should go for do-
while statement.

2) In the do-while first body will be executed then only condition will be checked.

3) In the do-while the while must be ends with semicolon otherwise we are getting
compilation error.

4) do is taking the body and while is taking the condition and the condition must be
Boolean condition.

Syntax:-do

{

//body of loop

} while(condition);
Ex :-

class Test

{

public static void main(String[] args)

System.out.printIn(*'Kodanda Ramu');
i++;

Jwhile (i<10);

}

}

Transfer statements:- by using transfer statements we are able to transfer the flow
of execution from one position to another position .

1. break

2. continue
3. return
4. try

break:- we are able to use the break statement only two places if we are using any
other place the compiler will raise compilation error.

a. Inside the switch statement.

b. Inside the loops.

Ex :- break means stop the execution come out of loop.
class Test

{

public static void main(String[] args)
{

for (int 1=0;i<10;i++)

{

if (i==5)

break;

}
System.out.println(i);
}

}

}

Continue:- (skip the current iteration continue the rest of the iterations normally)

class Test

{

public static void main(String[] args)
{

for (int i1=0;i<10;i++)

{

if (i==5)

{

continue;

}
System.out.printIn(i);
}
}
}

Data Types:-

1) Data types are used to represent the type of the variable and type of the
expression.

2) Data types are used to specify the how much memory is allocated for variables.

Data type Size Range
Byte 1 -128 to 127
Short 2 -32768 to 32767
Int 4 2147483648 to 2147483647
Long 8 -2°31 to 27°31-1
Float 4 -3.4e38 to 3.4e308
Double 8 -1.7e308 to 1.7e308
Char 2 0 to 65535
boolean N A Not Applicable

Variables :- used to store the values. While declaring variable we must specify the
type of the variable by using data types concept.

In java, we have 3 kinds of variables.
Local variables
Instance variables

Static variables

Local variables : The variables which are declare inside a method & inside a block &
inside a constructor is called local variables

The scope of local variables are inside a method or inside a constructor or inside a
block.

Ex:-

class Test

{

public static void main(String[] args)
{

int a=10; // Local variables
int b=20;
System.out.println(a+b);

}

}

Instance variables:-

The variables which are declare inside a class and outside of the methods is called
instance variables.

We are able to access instance variables only inside the class any number of methods.

Ex:-

class Test

{

int a=10;

int b=20;

void add()

{
System.out.println(a+b);
}

public static void main(String[] args)

{

Test t=new Test();
System.out.println(t.at+t.b);

t.addQ);

}
1

3. Static variables:-

The instance variables which are declared as a static modifier such type of variables
are called static variables.

We are able to access static variables within the class any number of methods.
class Test

{

static int a=10;

static int b=20;

public static void main(String[] args)
{

System.out.println(a+b);

}

void add()

{

System.out.printl(a+tb);

}

}

Calling of static variables:-

a. Directly possible.

b. By using class name possible.

c. By using reference variable possible.
Ex:-

class Test

{

static int x=100;

public static void main(String[] args)
{

//1-way(directly possible)
System.out.println(a);

//2-way(By using class name)
System.out.printin(Test.a);

//3-way(By using reference variable)
Test t=new Test();

System.out.printin(t.a);

}
}

Instance vs Static variables:-
1. Instance variable for the each and every object one separate copy is maintained.

2. Static variable for all objects same copy is maintained. One Object change the
value another object is affected.

Ex:-

class Test

{

int a=10;

static int b=20;

public static void main(String args[])
{

Test tl=new Test();
System.out.printin(tl.a);//10
System.out.println(tl.b);//20

tl.a=444;

t1.b=555;

Test t2=new Test();
System.out.println(t2.a);//10
System.out.printIn(t2.b);//555
t2.b=111;
System.out.println(t2.b);//111
Test t3=new Test();
System.out.println(t3.a);//10
System.out.println(t3.b);//111
Test t4=new Test();
System.out.println(t4.a);//10

System.out.println(t4.b);//111

}
1

Class and Object :
Class is a group of objects that have common property.

Java is classes based based language we are able to design the program by using
classes and objects.

Object is a realworld entity. Object orientation is methodology to design a program
by using classes and objects.

Object is physical entity where as class is a logical entity.

A class is a template or blue print from which type of objects are created.
Object is nothing but instance of a class.

Every objects contains 3 characterstics :

1. State(represent data of an object)

2. Behavior(represent behavior of an object)

3. ldentity(used to identify the objects uniquely).

Example program for creating class and object :

Class Test

{

Public static void main(String args[])

{
System.out.printIn(*Techfort software services pvt 1td”);
}
}

Creation of object :

Test t=new Test();

Test Class

t Reference variable

new Keyword/operator

Test() Constructor used to intialize
Arrays :

Arrays are used to store the multiple numbers of elements of single type.

The length of the array is established at the time of array creation. After creation
the length is fixed.

The items presented in the array are classed elements. Those elements can be accessed
by index values. The index is begins from (0).

Advantages of array:-

1) Length of the code will be decreased

2) We can access the element present in the any location.
3) Readability of the code will be increased.

single dimensional array declaration:-

int[] a;

int []a;

int a[];

declaration & instantiation & initialization :-

approach 1:- int a[]={10,20,30,40};

approach 2:- int[] a=new int[100];

a[0]=10;

a[1]=20;

a[2]=30;

a[4]=40;

Example 1 :

package com.madhu.basics;

public class ArrayDemol {

public static void main(String[] args) {

int a[]={10,20,30,40};
System.out.println(a[0]);
System.out.println(a[1]);
System.out.println(a[2]);

System.out.println(a[3]);

}

Example 2 : (using for loop)

package com.madhu.basics;

public class ArrayDemo2 {

public static void main(String[] args) {
int a[]1={10,20,30,40};
for(int i1=0;i<a.length;i++)
{

System.out.println(ali]);

Example 3 : (using for-each loop) (1.5 version)
package com.madhu.basics;
public class ArrayDemo3 {
public static void main(String[] args) {
int a[]={10,20,30,40};
for(int al:a)
{

System.out.printin(al);

b

3

declaration of two dimensional array:-
int[][] a;

int [1[a;

int a[][l;

int [lall;

Ex:-

class Test

{

public static void main(String[] args)
{

int[][1 a={{10,20,30},{40,50,60}};
System.out.printin(a[0][0]); //10
System.out.printin(a[1][0]); //40
System.out.printin(a[1][1]); //50

}

}

Methods (behaviors):-
1) Methods are used to provide the business logic of the project.

2) The methods like a functions in C-language called functions, in java language is
called methods.

3) Inside the class it is possible to declare any number of methods based on the
developer requirement.

4) As a software developer while writing method we have to fallow the coding
standards like the method name starts with lower case letters if the method contains
two words every inner word also starts uppercase letter.

5) It will improve the reusability of the code. By using methods we can optimize the
code.

Syntax: -

[modifiers-list] return-Type Method-name (parameter-list) throws Exception
Ex:-

Public void m1(Q)

Public void m2(int a,int b)

Method Signature:-

The name of the method and parameter list is called Method Signature. Return type and
modifiers list not part of a method signature.

Ex:- ml(int a,int b)---- Method Signature
m2Q);---————————— - Method signature
There are 2 types of methods :

Instance methods — can be called using objects
Static methods — can be called directly

Ex:-

package com.madhu.basics;

public class MethodDemo {

void m1() // instance method

{

System.out.printIn(ml is instance method™);

}

static void m2() // static method

{

System.out.printIn(m2 is static method™);
}
public static void main(String[] args) {
MethodDemo methodDemo=new MethodDemo();
methodDemo.m1(); // called using object

m2(); // called directly

}
}

There are 2 types of instance methods :

1) Accessor methods just used to read the data. To read the reading the data use
getters methods.

2) Mutator methods used to store the data and modify the data for the storing of data
use setters methods.

class Test

{

String name;

int id;

//mutator method we are able to access and the data

void setName(String name)

{

this.name=name;

}

void setld(int id)
{

}

//accessor methods are used to read the data
String getName()

{

return name;
}
int getld(Q)
{

return id;

}

public static void main(String[] args)
{

Test t=new Test();

t.setName("*Madhu Kumar Vundavalli™);
t.setld(101);

String name=t.getName();
System.out.printin(name);

int id=t.getld(Q);
System.out.printin(id);

}

}

Constructors :-
1) Constructors are executed as part of the object creation.

2) If we want to perform any operation at the time of object creation the suitable
place is constructor.

3) Inside the java programming the compiler is able to generate the constructor and
user is able to declare the constructor. so the constructors are provided by compiler
and user.

There are two types of constructors :
1) Default Constructor.

a. Zero argument constructor.

2) User defined Constructor

a. zero argument constructor

b. parameterized constructor

Default Constructor:-

1) in the java programming if we are not providng any constructor in the class then
compiler provides default constructor.

2) The default constructor is provided by the compiler at the time of compilation.

3) The default constructor provided by the compiler it is always zero argument
constructors with empty implementation.

4) The compiler generated default constructor is executed by the JVM at the time of
execution.

User defined constructors:-

Based on the user requirement user can provide zero argument constructor as well as
parameterized constructor.

Rules to declare a constructor:-
1) Constructor name must be same as its class name.

2) Constructor doesn’t have no explicit return type if we are providing return type
we are getting any compilation error and we are not getting any runtime errors just
that constructor treated as normal method.

3) In the class it is possible to provide any number of constructors.

Example program for default constructor, parameterized constructor and constructor
chaining :

package com.madhu.constructors;
public class Test {
Test()

{

System.out.printin("Default constructor™);

Test(int a, int b)

{
this(); // calling constructor
System.out.printIn(*parameterised constructor™);
int c = a+ b;
System.out.println("atb value is" + c);

}

public static void main(String[] args) {

Test t=new Test(12, 14);

}

Object oriented concepts :

Inheritance : The process of getting properties(variables) and behaviours(methods)
from one class to another class is called inheritance.

The main purpose of the inheritance is code extensibility whenever we are extending
automatically the code is reused.

In inheritance one class giving the properties and behavior and another class is
taking the properties and behavior.

Inheritance is also known as is-a relationship means two classes are belongs to the
same hierarchy.

By using extends keyword we are achieving inheritance concept.

In the inheritance the person who is giving the properties is called parent the
person who is taking the properties is called child.

To reduce length of the code and redundancy of the code sun peoples introducing
inheritance concept.

Types of inheritance :

Single inheritance : Extending the properties from single parent class to single
child class is known as single inheritance.

Ex:-
class Parent

{

void m1()

{
System.out.printIn(*“Parent class method”);
}
}

Class Child extends Parent

{

void m2Q)

{

System.out.printIn(“child class method”);

}

Public static void main(String args[1)
{

Child c=new Child();

c.m1(); // called parent class method

c.m2(); // called child class method

}
1

Multi level inheritance : one super and one sub class at each and every level.

Multiple inheritance : The process of getting properties and behaviors form more than
one super class to the one child class. The multiple inheritance is not possible in
the java language using classes and it is supported using interfaces. so one class
can extends only one class at time it is not possible to extends more than one class
at time.

Hierarchical inheritance:- The process of getting properties and behaviors from one
super class to the more than one sub classes is called hierarchical inheritance.

Hybrid inheritance:- Combination of any two inheritances is called as hybrid
inheritance. If are taking the multilevel and hierarchical that combination is called
hybrid inheritance.

Important points for inheritance :

Every class in the java programming is a child class of Object.

The root class for all java classes is Object class.

The default package in the java programming is java.lang package.
Polymorphism : polymorphism means many forms

Polymorphism is a Greek word poly means many and morphism means forms.
There are 2 types of polymorphism.

Compile time polymorphism (Early binding)

Run time polymorphism(Late binding)

Method Overloading:-

1) Two methods are said to be overloaded methods if and only if two methods are
having same name but different argument list.

2) We can overload the methods in two ways in java language

a. Provide the different number of arguments to the same methods.
b. Provide the same number of arguments with different data types.
3) If we want achieve overloading one class is enough.

4) It is possible to overload any number of methods.

Eg:-

package com.madhu.oops;

public class MethodOverLoadingDemo {

void add()
{
System.out.println("method with no args™);
}
void add(int a)
{
System.out.println(*"Method with single argument :''+a);
}

void add(int a, int b)

{

}

Can we

Eg:-

int c=atb;
System.out.printIn(method with 2 arguments :"+(c));
}
public static void main(String[] args) {
MethodOverLoadingDemo m=new MethodOverLoadingDemo();
m.add();
m.add(12);

m.add(12, 14);

overload main method ?? yes.. we can overload main method

package com.madhu.oops;

class OverLoadMain

{
public

System.

System.

public

System.

System.

public

System.

static void main(int a)

out.printIn(*integer parameter argument');

out.printin(a);

static void main(char ch)

out.printIn('character paramer argument');

out.printin(ch);

static void main(String[] args)

out.printIn("String[] parameter main method start');

main(100);
main(*re);
}
}

Method Overriding :-

1) If the child class not satisfy the parent class method implementation then it is
possible to override that method in the child class based on child class requirement.

2) If we want to achieve method overriding we need two class(child and parent).

3) In the overriding concept the child class and parent class method signatures must
be same otherwise we are getting compilation error.

Parent class method is called over ridden method
Child class method is called over riding method
Eg:-
package com.madhu.oops;
public class Sample {
void show()
{
System.out.printIn('parent class method");
}
}

package com.madhu.oops;
public class Samplel extends Sample{
void show()
{
super.show();

System.out.printIn("child class method");

}

public static void main(String[] args) {
Samplel s=new Samplel();

s.show();

1
1

Super keyword : if we have same method name with same number of arguments in parent
class and child class, if we call the method by using child class object child class
method will be called. In order to call parent class method we have to use super
keyword.

Abstraction:-

Hiding the internal implementation and highlighting the set of services that process
is called abstraction.

Ex:-

a. Bank ATM Screens (Hiding thee internal implementation and highlighting set of
services like withdraw, money transfer, mobile registration).

b. Mobile phones (The mobile persons are hiding the internal circuit implementation
and highlighting touch screen).

c. Syllabus copy (the institutions persons just highlighting the set of contents that
persons provided the persons are not highlighting the whole content).

Ex:- Abstract classes
Interfaces
The way of representation the methods are divided into two types
1) Normal methods
2) Abstract methods
Normal methods:-
Normal method is a method which contains declaration as well as implementation.
Ex:-

Void m1()

Abstract methods:-

The method which is having declaration but not implementations such type of methods
are called abstract Method. Hence every abstract method should end with “;”.

The child classes are responsible to provide implementation for parent class abstract
methods.

Ex:- void ml1 (); -- abstract method

Based on above representation of methods the classes are devided into two types
1) Normal classes

2) Abstract classes

Normal classes:-

Normal class is a java class it contains only normal methods.

Abstract class:- Abstract class is a jav class which contains at least one abstract
method.To specify the particular class is abstract and particular method is abstract
method to the compiler use abstract modifier.

For the abstract classes it is not possible to create an object. Because it contains
the un implemented methods.

For any class if we don’t want instantiation then we have to declare that class as
abstract i.e., for abstract classes instantiation (creation of object) is not
possible.

Eg:-

package com.madhu.oops;
public abstract class Bankl {
void deposit()

{

System.out.println(""we can deposit upto 5 lakhs™);

}

void withDrawl ()

{

System.out.println(""we can with draw upto 2 lakhs™);

abstract void loan();
abstract void interest();
}
package com.madhu.oops;
public class Bank2 extends Bankl {
void loan()
{
System.out.printIn(""we can take loan upto 1 lakh™);
}
void interest()
{
System.out.printIn("interest is 2%);
}
public static void main(String[] args) {
Bank2 b=new Bank2();
b.deposit();
b.withDrawl () ;
b.loan();

b.interest();

}

if the child class is unable to provide the implementation for parent class abstract
methods at that situation we can declare that class is an abstract then take one more
child class in that class provide the implementation for remaining methods.

Even though class does not contain any abstract method still we can declare the class
as abstract i.e. abstract class can contain zero number of abstract methods. The
abstract classes it is not possible to create object.

Interfaces :
Interface is also one of the type of class it contains only abstract methods.
For the interfaces also .class files will be generated.

Each and every interface by default abstract hence it is not possible to create an
object.

Interfaces not alternative for abstract class it is extension for abstract classes.
100 % pure abstract class is called interface.
The Interface contains only abstract methods means unimplemented methods.

Interfaces giving the information about the functionalities it are not giving the
information about internal implementation.

To provide implementation for abstract methods we have to take separate class that
class we can called it as implementation class for that interface.

Interface can be implemented by using implements keyword.
For the interfaces also the inheritance concept is applicable.
Eg:-

package com.madhu.oops;

public interface Bank3

{

void deposit();

void withDrawl();

void loan();

void interest();

}

package com.madhu.oops;

public class Bank4 implements Bank3

{

public void deposit()

System.out.println(""we cand deposit upto 5 lakhs™);

}
public void withDrawl()
{
System.out.println(""we can with draw upto 2 lakhs™);
}
public void loan()
{
System.out.println(""we can take loan upto 1 lakh™);
}
public void interest()
{
System.out.printIn("interest is 2%);
}
public static void main(String[] args)
{

Bank4 b=new Bank4();
b.deposit();
b.withDrawl();
b.loan(Q);
b.interest();

}

}

Encapsulation:-

The process of binding the data and code as a single unit is called encapsulation.

We are able to provide more encapusulation by taking the private data(variables)
members. To get and set the values from private members use getters and setters to
set the data and to get the data.

Ex:-

class Encapsulation
{

private int sid;
private int sname;
public void setSid(int x)
{

this.sid=sid;

}

public int getSid()
{

return sid;

}

public void setSname(String sname)

{

this.sname=sname;

}

public String getSname()

{
return sname;
}
}

To access encapsulated use fallowing code:-

class Test

{

public static void main(String[] args)
{

Encapsulation e=new Encapsulation();
e.setSid(100);

e.setSname(*'ratan’);

int num=e.getSid();

String name=e.getSname();
System.out.printin(num);

System.out.println(name);

}

}

Strictfp:-

Strictfp is a modifier applicable for classes and methods.

If a method is declared as strictfp all floating point calculations in that method
will follow IEEE754 standard. So that we will get platform independent results.

If a class is declared as stictfp then every concrete method in that class will
follow IEEE754 standard so we will get platform independent results.

Native:-
Native is the modifier only for methods but not for variables and classes.

The native methods are implemented in some other languages like C and C++ hence
native methods also known as “foreign method”.

For native methods implementation is always available in other languages and we are
not responsible to provide implementation hence native method declaration should

compulsory ends with “;”.

Ex:- public native String intern();

Public static native void yield();

Public static native void sleep(long);

Which of the fallowing declarations are valid:-
public static void main(String[] args)------- valid

public static void main(String... a)-----—--—- valid

public static int main(String... args)------- invalid
static public void mian(String a[])---------- valid

final public static void mian(String[] madhu)---valid

final strictfp public static void main(String[] ramu)----- valid
final strictfp synchronized public static void main(String... veeru)------- valid
Scanner :-

It is a class present in java.util package.

It is used to take the values from the key board.

To get the integer value from the keyboard------- - nextint()

To get the String value from the keyboard--------- - next()

To get the floating values from the keyboard------ :- nextFloat();
Eg :-

import java.util.*;

class Test

{

String ename;

int eid;

double esal;

int eage;

void details()

{

Scanner s=new Scanner(System.in);
System.out.println(enter emp name'™);
String ename=s.next();
this.ename=ename;
System.out.printIn("enter emp id");
int eid=s.nextint();

this.eid=eid;

System.out.println("enter emp sal™);
double esal=s._nextDouble();
this.esal=esal;
System.out.printin(“enter age™);

int eage=s.nextint();
this.eage=eage;

}

void display()

{

System.out.println(***xxxssssrrony detal |S*rrrrrtsirxr) .

System.out.println(ename);
System.out.println(eid);
System.out.printin(esal);
System.out.println(eage);

}

void status()
{
if (eage>40)
{

System.out.printIn('not elgible™);

}

else

{

System.out.printIn("elgible™);

}
}

public final strictfp synchronized static void main(String[]

{

args)

Test t=new Test();
t.details();
t.display();
t.status();

}

}

Packages :-
1) The package contains group of related classes and interfaces.

2) The package is an encapsulation mechanism it is binding the related classes and
interfaces.

3) We can declare a package with the help of package keyword.

4) Package is nothing but physical directory structure and it is providing clear-cut
separation between the project modules.

5) Whenever we are dividing the project into the packages(modules) the sharability of
the project will be increased.

Syntax: -

Package package name;

Ex:- package com.dss;

The packages are divided into two types
1) Predefined packages

2) User defined packages

Predefined packages:-

The java predefined packages are introduced by sun peoples these packagescontains
predefined classes and interfaces.

Ex:- java.lang
Java.io
Java.awt
Java.util

Java.net......wn s .etc

Java.lang:-

The most commonly required classes and interfaces to write a sample program is
encapsulated into a separate package is called java.lang package.

© Ex:- String(class)
StringBuffer(class)
Object(class)
Runnable(interface)
Cloneable(nterface)

Note: -

the default package in the java programming is java.lang if we are importing or not
importing by default this package is available for our programs.

Java.io package:-

The classes which are used to perform the input output operations that are present in
the java.io packages.

Ex:- FilelnputStream(class)
FileOutputStream(class)
FileWriter(class)
FileReader(class)

Java.net package :-

The classes which are required for connection establishment in the network that
classes are present in the java.net package.

Ex:- Socket
ServerSocket
InetAddress
URL

Java.awt package:-

The classes which are used to prepare graphical user interface those classes are
present in the java.awt package.

Ex:- Button(class)

Checkbox(class)

Choice(Class)
List(class)
User defined packages:-
1) The packages which are declared by the user are called user defined packages.

2) In the single source file it is possible to take the only one package. If we are
trying to take two packages at that situation the compiler raise a compilation error.

3) In the source file it is possible to take single package.
4) While taking package name we have to fallow some coding standreds.

Whenever we taking package name don’t take the names like packl, pack2, madhu,
ramu..... these are not a proper coding formats.

If it is a predefined package or user defined package whenever we are using that
package classes into our program we must make available that package into our program
with the help of import statement.

Access Modifiers :-
Public :-

This is the modifier applicable for classes, methods and variables (only for instance
and static variables but not for local variables).

If a class is declared with public modifier then we can access that class from
anywhere (within the package and outside of the package).

If we declare a member(variable) as a public then we can access that member from
anywhere but Corresponding class should be visible i.e., before checking member
visibility we have to check class visibility.

Default :-

This is the modifier applicable for classes, methods and variables (only for instance
and static variables but not for local variables).

If a class is declared with <default> modifier then we can access that class only
within that current package but not from outside of the package.

Default access also known as a package level access.

The default modifier in the java language is default.

Private :-
private is a modifier applicable for methods and variables.

If a member declared as private then we can access that member only from within the
current class.

If a method declare as a private we can access that method only within the class. it
is not possible to call even in the child classes also.

Protected :-

If a member declared as protected then we can access that member with in the current
package anywhere but outside package only in child classes.

But from outside package we can access protected members only by using child
reference. If we try to use parent reference we will get compile time error.

Members can be accesses only from instance area directly i.e., from static area we
can’t access instance members directly otherwise we will get compile time error.

String :-
String is a final class it is present in java.lang package.
String is nothing but a group of characters or character array.

Once we are creating String object it is not possible to do the modifications on
existing object called immutability nature.

In String class .equals() is used for content comparision.
Eg :-

package com.madhu.strings;

public class StringDemo

{

public static void main(String[] args)
{

String s="madhu";
System.out.println(s);
s.concat("'kumar');
System.out.printin(s);

String sl=s.concat("'kumar™);

System.out.println(sl);
System.out.println(sl.length());
System.out.printin(sl.getClass());
System.out.println(sl.toLowerCase());
System.out.println(sl.toUpperCase());

System.out.println(sl.hashCode());

}
}

StringBuffer :-
String Buffer is a class present in the java.lang package.
StringBuffer is a final class so it can’t be inharited.

StringBuffer is a mutable class so it is possible to change the content in the same
location.

StringBuffer .equals() method is used for reference comparision.
StinrgBuffer is mutable:-

Once we are creating a StringBuffer Object it is possible to the modification on
existing object is called mutability nature.

Ex:-

class Test

{

public static void main(String[] args)
{

StringBuffer sl=new StringBuffer("rattaiah');
sl.append("'addanki');//mutability
System.out.println(sl);

StringBuffer s2=new StringBuffer("durgasoft');
StringBuffer s3=s1;

System.out.printin(sl.equals(s2));

System.out.println(sl.equals(s3));
System.out.println(sl==s2);
System.out.println(sl==s3);

}

}

class Test

{

public static void main(String[] args)

{

Test tl=new Test();

Test t2=tl1;

Test t3=new Test();
System.out.printin(tl.equals(t2)); //true
System.out.println(tl.equals(t3)); //false
String strl="ratan";

String str2="ratan";
System.out.printin(strl.equals(str2)); //true
StringBuffer sbl=new StringBuffer(“madhu™);
StringBuffer sb2=new StringBuffer("madhu™);
StringBuffer sh3=sb2;
System.out.printin(sbl.equals(sbh2)); //false

System.out.println(sb2.equals(sb3)); //true

1
}

StringBuilder :-
Introduced in jdkl1.5 version.

StringBuilder is identical to StringBuffer except for one important difference.

Every method present in the StringBuilder is not Synchronized means that is not read
safe.

multiple threads are allow to operate on StringBuilder methods hence the performance
of the application is increased.

Cloneable :-

The process of creating exactly duplicate object is called cloning.
We can create a duplicate object only for the cloneable classes .
We can create cloned object by using clone()

The main purpose of the cloning is to maintain backup.

Eg :-

class Test implements Cloneable

{

int a=10;

int b=20;

public static void main(String[] args) throws CloneNotSupportedException
{

Test tl=new Test();

Test t2=(Test)tl.clone();

t1.a=100;

t1.b=200;

System.out.println(tl.a+"----"+tl1.b);

System.out.println(t2.a+"----"+t2_b);

}
}

Wrapper classes :-

To represent primitive data types as a Object form we required some classes these
classes are called wrapper classes.

All wrapper classes present in the java.lang package.

int,byte... Acts as a primitives we can make the primitives into the objects is called
wrapper calless the the wrapper classes are Integer,Short----- .

We are having 8 primitive data types hence sun peoples are providing 8 wrapper
classes.

Byte, Short, Integer, Long, Float, Double these are child classes of Number class.

Primitives and their corresponding classes :-

Primitives Wrapper classes
Byte Byte

Int Integer

Short Short

Long Long

Float Float

Double Double

Char Character
Boolean Boolean

Eg :-

class Test

{

public static void main(String[] args)
{

float =10.7F;

Float fl=new Float(f);

System.out.printin(fl);

Float f2=new Float(''10");
System.out.printin(f2);

Float f3=new Float("'ten™);
System.out.printIn(f3); //NumberFormatException
Integer il=new Integer(2);
System.out.printin(il);

Integer i2=new Integer('two™);
System.out.printIn(i2); //NumberFormatException

}

}

class Test

{

public static void main(String[] args)
{

int a=10; //primitive variable

System.out.println(a);

System.out.println(a.toString()); //CE:-int cant be dereferenced
Integer i=new Integer("'100"); //reference variable
System.out.println(i);

System.out.printIn(i.toString());

}
}

The main importance of wrapper classes :-

To convert a data types into the object means we are giving object from data types by
using constructor.

To convert String into the data types by using parsexxx() method
Utility methods:-

1. valueOf()

2. xxxValue()

3. parsexxx()

4. tostring()

1) valueOf():-

By using valueof() we are creating wrapper object and it is a alternative to the
constructor.

Ex :-
class Test

{

public static void main(String[] args)

{

//by using constructor converting String/primitive to wrapper object
Integer i=new Integer(10);

System.out.println(i);

//by using valueOf() converting String/primitive to the wrapper object
Boolean b=Boolean.valueOf("'true™);

System.out.printin(b);

}
1

XxxValue(): -

by using XXXValue() method we are converting wrapper objects into the corresponding
primitive values.

Ex :-

class Test

{

public static void main(String[] args)
{

Integer i=Integer.valueOf(150);

System.out.println("byte value :"+i_byteValue()); //-106
System.out.printIn('short value :"+i.shortValue()); //150
System.out.printIn("int value :"+i.intvalue()); //150
System.out.printIn(""long value :"+i.longvalue()); //150
System.out.println(*"float value :"+i.floatValue()); //150.0
System.out.println(*"double value :"+i.doublevValue()); //150.0
Character c=new Character("s");

char ch=c.charValue();

System.out.println(ch);

Boolean b=new Boolean(false);
boolean bb=b.booleanvValue();

System.out.printin(bb);

}

}
parsexXXX():-

by using above method we are converting String into the corresponding primitive.

Ex :-

class Test

{

public static void main(String[] args)
{

String strl1="10";

String str2="20";
System.out.println(strl+str2); //1020
int a=Integer.parselnt(strl);

float f=Float.parseFloat(str2);

System.out.println(a+f); //30.0

}
}

Autoboxing and Autounboxing :- (introduced in the 1.5 version)

Until 1.4 version we are not allowed to place primitive in the palc wrapper and
wrapper in the place of primitive. The programmer is responsible person to do the
explicit conversion primitive to the wrapper and wrapper to the primitive.

Autoboxing :-
Integer i1=10;

System.out.println(i);

The above statement does not work on the 1.4 and below versions. The auto conversion
of the primitive into the Wrapper object is called the autoboxing these conversions
done by compiler at the time of compilation.

Autounboxing: -
int a=new Integer(100);
System.out.println(a);

The auto conversion of the wrapper object to the primitive value is called
autounboxing and these conversions are done by compiler at the time of compilation.

Ex :-

class Test

{

static Integer i=10; //i is wrapper object
static int j; //j is primitive variable
static void print(int i)

{

J=1;

System.out.println(j);

}

public static void main(String[] args)
{

print(i);

System.out.println(j);

}

}

Files :- (Java.io package)

Java.io is a package which contains number of classes by using that classes we are
able to send the data from one place to another place.

In java language we are transferring the data in the form of two ways:-

1. Byte format

2. Character format

Streams are two types:-

1. Byte oriented streams.(supports byte formatted data to transfer)

2. Character oriented stream.(supports character formatted data to transfer)
Byte oriented streams:-

Java.io.FilelnputStream

To read the data from the destination file to the java application we have to use
FilelnputSream class.

To read the data from the .txt file we have to read() method.
Java.io.FileOutputStream: -

To write the data to the destination file we have to use the FileOutputStream.
To write the data to the destination file we have to use write() method.
Ex:- it will supports one character at a time.

import java.io.*;

class Test

{

static FilelnputStream fis;

static FileOutputStream fos;

public static void main(String[] args)

{

try

{

fis=new FilelnputStream('get.txt");

fos=new FileOutputStream(‘'set.txt",true);

int c;

while ((c=fis.read())!=-1)

{

fos.write(c);

}

fis.close();
fos.close();

}

catch(10Exception i0)

{
System.out.printIn(*"'getting 10Exception™);
}
}
}

BufferedReader:- to read the data line by line format and we have to use readLine()
to read the data.

PrintWriter :- to write the data line by line format and we have to use println() to
write the data.

import java.io.*;

class Test

{

static BufferedReader br;

static PrintWriter pw;

public static void main(String[] args)

{

Try

{

br=new BufferedReader(new FileReader("get.txt™));
pw=new PrintWriter(new FileWriter(set.txt"));
String line;

while ((line=br.readLine())!=null)

{

pw.printin(line);
}

br.close();
pw.close();

}

catch(10Exception i0)

{
System.out.printIn('getting 10Exception™);
}
}
}

Buffered Streams:-

Up to we are working with non buffered streams these are providing less performance
because these are interact with the hard disk, network.

Now we have to work with Buffered Streams
BufferedlnputStream read the data from memory area known as Buffer.
We are having four buffered Stream classes
1. BufferedInputStream

2. BufferedOutputStream

3. BufferedReader

4. BufferedWriter

Ex:-

import java.io.*;

class Test

{

static BufferedReader br;

static BufferedWriter bw;

public static void main(String[] args)

{

Try

{

br=new BufferedReader(new FileReader("Testl.java"));
bw=new BufferedWriter(new FileWriter('States.java"));
String str;

while ((str=br.readLine())!=null)

{

bw.write(str);
}

br.close();
bw.close();

}

catch(Exception e)

{

System.out.printIn(‘getting Exception™);
}

}

}

Serialization:-

The process of saving an object to a file (or) the process of sending an object
across the network is called serialization.

But strictly speaking the process of converting the object from java supported form
to the network supported form of file supported form.

To do the serialization we required fallowing classes
1. FileOutputStream

2. ObjectOutputStream

Deserialization:-

The process of reading the object from file supported form or network supported form
to the java supported form is called deserialization.

We can achieve the deserialization by using fallowing classes.
1. FilelnputStream

2. ObjectlnputStream

Ex:-

import java.io.Serializable;

public class Student implements Serializable
{

int id;

String name;

int marks;

public Student(int id, String name,int marks)
{

this.id = id;

this.name = name;

this.marks=marks;

1
1

To perform serialization :- we are writing the object data to the file called abc.txt
file we are transferring that file across the network.

import java.io.*;

class Serializablel

{

public static void main(String args[])throws Exception
{

Student sl =new Student(211,"ravi',100);

FileOutputStream fos=new FileOutputStream('abc.txt",true);
ObjectOutputStream oos=new ObjectOutputStream(fos);
oos.writeObject(sl);

oos.flush();

System.out.printIn("Serializable process success™);

1
}

To perform deserialization:- in the network the file is available with java data to
read the data we have to go for deserialization.

import java.io.*;
class Deserialization

{

public static void main(String args[1)throws Exception
{

//deserialization process

FilelnputStream fis=new FilelnputStream(*'abc.txt");
ObjectlnputStream ois=new ObjectlnputStream(fis);
Student s=(Student)ois.readObject();
System.out.println("the student name is:"+s.name);
System.out.printIn("the stuent id is:"+s.id);
System.out.println(*"the student marks:"+s.marks);

System.out.printIn(*"deserialization success");

}
1

Transient :- Transient modifier is the modifier applicable for only variables and we
can’t apply for methods and classes.

At the time of serialization, if we don’t want to save the values of a particular
variable to meet security constraints then we should go for transient modifier.

At the time of serialization JVM ignores the original value
default value will be serialized.

Eg :-

import java.io.*;

import java.io.Serializable;

class Student implements Serializable
{

transient int 1d=100;

transient String name="ravi"';

}

class Serializablel

{

public static void main(String args[])throws Exception
{

Student sl=new Student();

System.out.println("the stuent id is:"+sl.id);
System.out.printIn("the student name is:"+sl.name);
FileOutputStream fos=new FileOutputStream('ratan.txt",true);
ObjectOutputStream oos=new ObjectOutputStream(fos);
oos.writeObject(sl);

FilelnputStream fis=new FilelnputStream(*'ratan.txt™);
ObjectlnputStream ois=new ObjectlnputStream(fis);

Student s=(Student)ois.readObject();

System.out.printIn("the stuent id is:"+s.id);

System.out.println("the student name is:"+s.name);

}
}

of

transient variable and

Exception Handling :-

Dictionary meaning of the exception is abnormal termination.

An exception is a problem occurred during execution time of the program.

An unwanted unexpected event that disturbs normal flow of execution called exception.
Exception is nothing but a object.

Exception is a class present in java.lang package.

All the exceptions are nothing but objects called classes.

Whenever user is entered invalid data then Exception is occur.

A file that needs to be opened can’t found then Exception is occurred.

Exception is occurred when the network has disconnected at the middle of the
communication.

Types of Exceptions:-

As per sun micro systems standards The Exceptions are divided into three types
1) Checked Exception

2) Unchecked Exception

3) Error

Checked Exception :-

The Exceptions which are checked by the compiler at compilation time for the proper
execution of the program at runtime is called CheckedExceptions.

Ex :- 10Exception,SQLException etc.

Some of the checked Exceptions in the java language :-

Exception Description

ClassNotFoundException If the loaded class is not available

CloneNotSupportedException Attempt to clone an object that does not
implement the Cloneable interface.

Il1legalAccessException Access to a class is denied

InstantiationException Attempt to create an object of an
abstract class or interface.

InterruptedException One thread has been interrupted by
another thread

NoSuchMethodException If the requested method is not available

UncheckedException :-

The exceptions which are not checked by the compiler at compilation time is called
uncheckedeException. These checking down at run time only.

Ex:- ArithmeticException, NullPointerException, etc.

Some of the unchecked Exceptions in the java language :-

Exception Description

ArithmeticException Arithmetic error, such as divide-by-zero.

Array I ndexOutOfBoundsException Array index is out-of-bounds.(out of
range)

ClassCastException If the conversion is Invalid.

I1legalArgumentException Requested operation not compatible with
current thread state.

IndexOutOfBoundsException Some type of index is out-of-bounds.

NullPointerException Invalid use of a null reference.

Error :-

Errors are caused by lack of system resources . these are non recoverable.
Ex:- StackOverFlowError,OutOfMemoryError,AssertionError etc.......
Good point:-

The Exception whether it is checked or unchecked the Exceptions are occurred at
runtime.

Difference between Exception and Error :-
Exception:-

An exception is unwanted unexpected event these are caused by the programmer mistake.
Exceptions are recoverable.

Ex:- 10Exception,SQLExcetion,RuntimeExecption etc.

Error :-

Errors are caused by lack of system resources . these are non recoverable.
Ex :- StackOverFlowError,AssertionError etc.

Note :-

1) RuntimeException and its child classes and Error and its child classes are
Unchecked remaining all are checkedExceptions.

2) Root class for all Exception hierarchy is Throweable class.

In java Exception handling we are having 5 key words:-
1) try

2) catch

3) finally

4) throw

5) throws

Exception Handling :-

It is recommended to handle the Exception the main of the Exception Handling is
normal Execution of the program or graceful termination of the program at runtime.

We are able to handle the exception in two ways.
1. By using try-catch blocks

2. By using throws keyword.

Exception handling by using Try —catch block :-

1) In java language we are handling the exceptions By using try and catch blocks. try
block contains risky code of the program and catch block contains handling code of
the program.

2) Catch block code is a alternative code for Exceptional code. If the exception is
raised the alternative code is executed fine then rest of the code is executed
normally.

Syntax :-
try
{

Risky code

}

Catch(ExceptionName reference_variable)

{

Risk handling code

}

Before try and catch :- The program goes to abnormal termination

class Test

{

public static void main(String[] args)
{

System.out.println(*"Techfort™);
System.out.printIn("software services pvt 1td");
System.out.println(10/0);

System.out.println(*solutions™);

1
}

Output :- Techfort

Software

Exception in Thread “main” :java.lang.ArithmeticException: / by zero
After try catch :-

1) If we are taking try-catch the program goes to normal termination. Because the
risky code we are taking inside the try block and handling code we are taking inside
the catch block.

2) If the exception is raised in the try block the corresponding catch block is
executed.

3) If the corresponding catch block is not there program goes to abnormal
termination.

class Test

{

public static void main(String[] args)
{

System.out.printIn("Techfort™);
System.out.println("software™);

try

{

System.out.println(10/0);

}

catch (ArithmeticException e)

{

System.out.printIn("'you are getting AE "+e);

}
System.out.printin("solutions™);
}
}

Output:- Techfort

Software

You are getting AE: java.lang.ArithmeticException: / by zero
Solutions.

Ex :-

Exception raised in try block the JVM will search for corresponding catch block if
the catch block is matched, corresponding catch block will be executed and rest of
the code is executed normally.

class Test

{

public static void main(String[] args)
{

System.out.printIn(*program starts™);
try

{

int[] a={10,20,30};
System.out.println(a[0]);

System.out.println(a[l1]);

System.out.println(a[2]);
System.out.println(a[3]);
}

catch(ArrayIndexOutOfBoundsException ae)

{

System.out.println(""we are getting exception™);

}
System.out.printIn(""rest of the code™);
}
}

Finally block :-
1) finally is a block it is always executed irrespective of try and catch.
2) Finally contains clean-up code.

3) It is not possible to write finally alone . we must take try-catch-finally
otherwise take the try-finally these two are the possibilities. If we are taking any
other we are getting compilation error saying finally without try block .

Syntax :-

try

{

risky code;

}

catch (Exception obj)
{

handling code;

}

finally
{

free code;

}

Ex :- Exception raised in try block and corresponding catch block is matched then
rest of the code is executed normally.

class Test

{

public static void main(String[] args)
{

try

{

System.out.printIn("Techfort™);
System.out.println(10/0);

}

catch (ArithmeticException ae)

{

System.out.printIn('u r getting ae:"+ae);
}

finally
{

System.out.printIn("finally block is always executed);

}
System.out.println(""rest of the code™);
}
}

Output :- Techfort
U r getting ae:ArithmeticException : /by zero

Finally block is always executed

Throw :-

1) The main purpose of the throw keyword is to creation of Exception object
explicitly either for predefined or user defined .

2) Throw keyword works like a try block. The difference is try block is automatically
find the situation and creates a Exception object implicitly. Whereas throw keyword
creates a Exception object explicitly.

Ex :-
class Test

{

public static void main(String[] args)
{

try

{

System.out.println(10/0);

}

catch (ArithmeticException ae)

{
System.out.println(""we are getting Exception "+ae);
}
}
}

Output :- we are getting Exception ArtithmeticException: / by zero
Note :-

In the above program the main method is responsible to create a exception object. So
the main method is creating exception object implicitly. The programmer is not
responsible person to creates a exception object.

Ex :-
class Test

{

public static void main(String[] args)

{

throw new ArithmeticException(*'we are getting Exception / by zero man');
}

}

Output:-

Exception in Thread “main” :java.lang.ArithmeticException:we are getting Exception/
by zero man

Throws :-

1) Throw keyword is used to create exception object explicitly. But the main purpose
of the throws keyword is bypassing the generated exception from present method to
caller method.

2) Throw keyword is used in the method body. But throws keyword we have to use in the
method declaration.

3) It is possible to throws any number of exceptions at a time based on the
programmer requirement.

In the java language we are handling the Exception in two ways :-
1) By using try-catch blocks

2) By using throws keyword

By using try-catch blocks:-

Ex :-

import java.io.*;

class Student

{

void studentDetails()

{

try

{

BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
System.out.printIn("please enter student name™);

String sname=br.readLine();

System.out.printIn(*“u r name is:”+shame);

}

catch(10Exception €)

{

System.out.println(*"we are getting Exception'+e);
}

}

public static void main(String[] args)

{

Student sl=new Student();

sl.studentDetails();

}
}

By using throws keyword :-

Ex 1:-

import java.io.*;

class Student

{

void studentDetails()throws I10Exception

{ BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
System.out.printIn("please enter student name™);

String sname=br.readLine();

System.out.printIn(u r name is:"+shame);

}

public static void main(String[] args)throws I0Exception
{
Student sl=new Student();

sl.studentDetails();

}

}
Ex 2 :-

import java.io.*;
class Student

{

void studentDetails()throws I0Exception

{

BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
System.out.println(""please enter student name™);

String sname=br.readLine();

System.out.printIn(u r name is:"+snhame);

}

public static void main(String[] args)

{

Student sl=new Student();
try

{

sl.studentDetails();

}

catch (10Exception ie)

{

System.out.printIn("this is my handling code™);

Exceptions :-

There are two types of exceptions present in the java language
1) Predefined Exceptions.

2) User defined Exceptions.

Predefined Exception:-

Predefined classes comes along with the software based on your requirement we have to
create a objects.

Ex :- ArithmeticException, I0Exception,NullPointerException.........etc
User defined Exceptions:-

Based on the user requirement user can creates a Exception is called user defined
Exception.

Ex:InvaliedAgeException,BombBlostException....... .etc
To create user defined Exceptions:-

1) To create user defined exception we have to take an user defined class that is a
sub class to the RuntimeException(for creation of unchecked Exceptions) .

2) To create user defined exception we have to take user defined class that is
subclass to the Exception(for creation of checked Exceptions)

3) Each and every Exception contains two constructors
a) default constructor

b) parameterized constructor

Eg :-

import java.util.*;

class Test

{

static void validate(int age)
{

if (age<l18)

{

throw new InvaliedAgeException(*'not elgible for vote™);

else

{

System.out.printIn(""welcome to the voteing");
}

}

public static void main(String[] args)
{

Scanner s=new Scanner(System.in);
System.out.println("please enter age');
int age=s.nextint();

validate(age);

}

}

Different types of exceptions :-
Array I ndexOutOfBoundsException: -

whenever we are calling array with out of range at that moment we are getting
ArraylIndexOutOfBoundsException.

Ex :-
class Test

{

public static void main(String[] args)
{

try

{

int[] a={10,20,30};
System.out.println(a[0]);//10

System.out.println(a[1]);//20

System.out.println(a[2]);//30
System.out.println(a[3]);//ArraylndexOutOfBoundsException

}

catch (ArraylndexOutOfBoundsException ae)
{
System.out.println(*"boss u r geting ArraylndexOutOfBoundsException™);

System.out.printIn(*"check u r code once™);

}
1
1

NumberFormatException :-

At the time of converting String value into the integer value we are getting
NumberFormatException.

Ex:-
class Test

{

public static void main(String[] args)

{

try

{

String str="123";

int a=Integer.parselnt(str);
System.out.println(a);//conversion(string - int) is good
String strl="abc";

int b=Integer._parselnt(strl);
System.out.println(b);//NumberFormatException

}

catch (NumberFormatException ae)

{

System.out.println(*'boss u r geting NumberFormatException™);

System.out.printIn(*"check once u r code™);

}
1
1

Nul lPointerException :-

If we are having “null” in any variable in that variable we are performing any
operation we are getting NummpointerException.

Ex :-
class Test

{

public static void main(String[] args)

try

String str="rattaiah";
System.out.printin(str.length());//8

String strl=null;
System.out.println(strl.length());//NullPointerException

}

catch (NullPointerException ne)
{
System.out.println(*'boss u r geting nullpointerexception');

System.out.println(*"check once u r code™);

}
}

ArithmeticException :-

Whenever we are performing / by zero operation we are getting ArithmeticException.
Ex:-

class Test

{

public static void main(String[] args)

{

try

{

int a=10/2;

System.out.printin(a);//5

DurgaSoftware solutions Mr. Ratan

184 | Page

int b=10/0;
System.out.println(b);//ArithmeticExceptiom
}

catch (ArithmeticException ne)

{

System.out.printIn(’boss u r geting ArithmeticException™);
System.out.printIn(*‘check once u r code™);
}

}

}

I1legalArgumentException :-
Thread priority range is 1-10
1--low priority

10--high priority

If we are giving priority out of range then we are getting IllegalArgumentException.

Ex :-

class Test

{

public static void main(String[] args)
{

Thread t=new Thread();
t.setPriority(11);//11legalArgumentException
}

}

I1legalThreadStateException :-

Whenever we are trying to restart the already start thread then we are getting
I1legalThreadStateException.

Ex :-

class Test

{

public static void main(String[] args)
{

Thread t=new Thread();
t.start();

t.start();//11legalThreadStateException

}

}

Different types of Errors:-

StackOverflowError: -

Whenever we are calling method recursively then we are getting StackOverflowError.
Ex :-

class Test

{

void m1()

{

m2Q);

System.out.printIn(""this is Rattaiah™);
}

void m2()

{

miQ;

System.out.printIn(*"from durgasoft™);

}

public static void main(String[] args)
{
Test t=new Test();

t.m1Q);

1
}

OutOfMemoryError: -

If we are creating objects greater than the heap memory then we are getting
OutOfMemoryError.

Ex :-
class Test

{

public static void main(String[] args)

{
int[] a=new int[100000000];//0utOfMemoryError
}
}

NoClassDefFoundError :-

Whatever the class if we want to execute if the class is not available at runtime we
are getting NoClassDefFoundError.

Ex :-
class Test

{

public static void main(String[] args)

{
System.out.printIn(*"Madhu kumar vundavalli');
}
}

Output :- javac Test.java
Java Test
o/p:- Madhu kumar vundavalli

if we are executing class ABC (Java ABC) if that class is not available then we are
getting NoClassDefFoundError.

Multi Threading :

The earlier days the computer’s memory is occupied only one program after completion
of one program it is possible to execute another program is called uni programming.

Whenever one program execution is completed then only second program execution will
be started such type of execution is called co operative execution, this execution we
are having lot of disadvantages.

a. Most of the times memory will be wasted.
b. CPU utilization will be reduced because only program allow executing at a time.
c. The program queue is developed on the basis co operative execution

To overcome above problem a new programming style will be introduced is called
multiprogramming :-

1) Multiprogramming means executing the more than one program at a time.
2) All these programs are controlled by the CPU scheduler.

3) CPU scheduler will allocate a particular time period for each and every program.

4) Executing several programs simultaneously is called multiprogramming.
5) In multiprogramming a program can be entered in different states.

a. Ready state.

b. Running state.

c. Waiting state.

6) Multiprogramming mainly focuses on the number of programs.

Advantages of multiprogramming:-

1. CPU utilization will be increased.

2. Execution speed will be increased and response time will be decreased.
3. CPU resources are not wasted.

Thread :-

1) Thread is nothing but separate path of sequential execution.

2) The independent execution technical name is called thread.

3) Whenever different parts of the program executed simultaneously that each and
every part is called thread.

4) The thread is light weight process because whenever we are creating thread it is
not occupying the separate memory it uses the same memory. Whenever the memory is
shared means it is not consuming more memory.

5) Executing more than one thread a time is called multithreading.

Single threaded model :-

class Test

{

public static void main(String[] args)
{

System.out.printin(""Hello World!");
System.out.printIn(’"hi Kodandarmu'); body

System.out.println("hello techfort™);

}

} In the above program only one thread is available is called main thread to know the
name of the thread we have to execute the fallowing code.

class Test

{

public static void main(String[] args)
{

System.out.printIn("Hello World!");

Thread t=Thread.currentThread();

System.out.printIn("currrent thread information is : "+t);//[main,5,main]
System.out.printIn("currrent thread priority is : "+t.getPriority());//5
System.out.printIn("currrent thread name is : "+t.getName());
System.out.printIn("hi rattaiah™);

System.out.printin("hello durgasoft™);

}
1

In the above program only one thread is available name of that thread is main thread.
The main important application areas of the multithreading are :-

1. Developing video games

2. Implementing multimedia graphics.

3. Developing animations

There are two different ways to create a thread is available

1) Create class that extending standered java.lang.Thread Class

2) Create class that Implementing java.lang.Runnable interface

First approach to create thread extending Thread class :-

Step 1:-

Creates a class that is extend by Thread classes and override the run() method

class MyThread extends Thread

{

public void run()

System.out.printIn(""business logic of the thread™);

System.out.printIn(""body of the thread");

1
1

Step 2:

Create a Thread object

MyThread t=new MyThread();

Step 3:-

Starts the execution of a thread.
t.start();

In this approach take one user defined class class that is extending Thread class .
Ex :-

class MyThread extends Thread

{

public void run()
{
System.out.println(*"Rattaiah from durgasoft');

System.out.printIn(""body of the thread");

}
1

class ThreadDemo

{

public static void main(String[] args)
{
MyThread t=new MyThread();

t.start();

}
1

Note :-

1) Whenever we are calling t.start() method the JVM search for the start() in the
MyThread class but the start() method is not present in the MyThread class so JVM
goes to parent class called Thread class and search for the start() method.

2) In the Thread class start() method is available hence JVM is executing start()
method.

3) Whenever the thread class start() that start() is responsible person to call run()
method.

4) Finally the run() automatically executed whenever we are calling start() method.

5) Whenever we are giving a chance to the Thread class start() method then only a new
thread will be created.

Life cycle stages are:-

1) New

2) Ready

3) Running state

4) Blocked / waiting / non-running mode

5) Dead state

New :-

MyThread t=new MyThread();

Ready :-

t.start()

Running state :-

If thread scheduler allocates CPU for particular thread. Thread goes to running state
The Thread is running state means the run() is executed.
Blocked State :-

If the running thread got interrupted of goes to sleeping state at that moment it
goes to the blocked state.

Dead State :-

If the business logic of the project is completed means run() over thread goes dead
state.

Second approach to create thread implementing Runnable interface:-
Step 1 :-

Creates a class that implements Runnable interface.

class MyClass extends Runnable

{

public void run()
{
System.out.printIn(*"Rattaiah from durgasoft');

System.out.printIn(""body of the thread");

}

}

Step 2 :-

Creating a object.

MyClass obj=new MyClass();

Step 3 :-

Creates a Thread class object.
Thread t=new Thread(obj);

Step 4 :-

Starts the execution of a thread.
t.start();

implementing Runnable interface
class MyThread implements Runnable

{

public void run()

{

System.out.println(*"'Rattaiah from durgasoft');

System.out.printIn(""body of the thread");

1
}

class ThreadDemo

{

public static void main(String[] args)
{

MyClasss obj=new MyClass();

Thread t=new Thread(obj);

t.start();

}
}
Step 1:-

the Class MyClass implements the Runnable interface and overriding run() method and
contains the logic associates with the body of the thread.

Step 2:-
Creates the object of implementation class this is not like a first mechanism.
Step 3 :-

Creates a generic thread object then pass the MyClass reference variable as a
parameter to that object.

Step 4 :-

As a result of third step 3 a thread object is created in order to execute this
thread method we need to class start() method. Then new thread is executed.

We are having two approaches :-
First approach:-

1) By extending the thread class, the derived class itself is a thread object and it
gains full control over the thread life cycle.

2) Another important point is that when extending the Thread class, the sub class
cannot extend any other base classes because Java allows only single inheritance.

if the program needs a full control over the thread life cycle, then extending the
Thread class is a good choice.

Second approach :-

1) Implementing the Runnable interface does not give developers any control over the
thread itself, as it simply defines the unit of work that will be executed in a
thread.

2) By implementing the Runnable interface, the class can still extend other base
classes if necessary.

if the program needs more flexibility of extending other base classes, implementing
the

Runnable interface would be preferable.
Difference between t.start() and t.run() :-

In the case of t.start(), Thread class start() is executed a new thread will be
created that is responsible for the execution of run() method.

But in the case of t.run() method, no new thread will be created and the run() is
executed like a normal method call by the main thread.

If we are overriding start() method then JVM is executes override start() method at
this situation we are not giving chance to the thread class start() hence n new
thread will be created only one thread is available the name of that thread is main
thread.

Getting and setting names of Thread:-

1) Every Thread in java has some name if may be default name provided by the jvm or
customized name provided by the programmer.

The following methods are useful to set and get the name of a Thread.
a. Public final String getName()

b. Public final void setName(String name)

Ex :-

class MyThread extends Thread

{

}

class Test

{

public static void main(String args[])

{
System.out.printIn(Thread.currentThread() .getName());
MyThread t=new MyThread();
System.out.println(t.getName());
Thread.currentThread() .setName("'madhu’);

System.out.printIn(Thread.currentThread() .getName());

}
1

Thread Priorities :-

Every Thread in java has some property. It may be default priority provided be the
JVM or customized priority provided by the programmer.

The valid range of thread priorities is 1 — 10. Where one is lowest priority and 10
is highest priority.

The default priority of main thread is 5. The priority of child thread is inherited
from the parent.

Thread defines the following constants to represent some standard priorities.

Thread Scheduler will use priorities while allocating processor the thread which is
having highest priority will get chance first and the thread which is having low
priority.

If two threads having the same priority then we can’t expect exact execution order it
depends upon Thread Scheduler.

The thread which is having low priority has to wait until completion of high priority
threads.

Three constant values for the thread priority.

a. MIN_PRIORITY =1

b. NORM_PRIORITY = 5

c. MAX_PRIORITY = 10

Thread class defines the following methods to get and set priority of a Thread.
a. Public final int getPriority()

b. Public final void setPriority(int priority)

Here “priority’ indicates a number which is in the allowed range of 1 — 10. Otherwise
we will get Runtime exception saying “lllegalArgumentException”.

Some of the thread class methods :-

Sleep() :-

The sleep() method causes the current thread to sleep for a specified amount of time
in milliseconds.

public static void sleep(long millis) throws InterruptedException

public static void sleep(long millis,int nanosec) throws InterruptedException
For example, the code below puts the thread in sleep state for 5 minutes:

Ex :-

class Test

{

public static void main(String[] args)
{

try

{

for (int 1=0;i<10 ;i++)

{

System.out.printIn(*"Rattaiah™);
Thread.sleep(5*1000); //5 seconds

Thread.sleep(5*60*1000); // 5 minutes

}
}

catch (InterruptedException ie)

{

System.out.printIn("the thread is got innterupted");

}
}

}

Ex :-

class Test

{

public static void main(String[] args)throws InterruptedException
{

System.out.printIn(*"Rattaiah™);

Thread.sleep(3*1000);

}
}
yield() :-

yield() method causes to pause current executing Thread for giving the chance for
waiting threads of same priority.

If there are no waiting threads or all threads are having low priority then the same
thread will continue its execution once again.

Syntax: -
Public static native void yield();
Ex:-

class MyThread extends Thread

{

public void run()

{

for(int 1=0;i<10;i++)
{

Thread.yield();
System.out.printIn("child thread™);
}

}

}

class ThreadYieldDemo

{

public static void main(String[] args)
{

MyThread tl=new MyThread();
tl.start();

for(int 1=0;i<10;i++)

{

System.out.printIn(main thread™);
}

}

}

join(Q) :-

If a Thread wants to wait until completing some other thread then we should go for
join() method.

1. Public final void join(Qthrows InterruptedExcetion

2. Public final void join(long ms)throws InterruptedException

3. Public final void join(long ms, int ns)throws InterruptedException
Ex -

class MyThread extends Thread

{

public void run()

{
for (int 1=0;i<5;i++)
{

Try

System.out.println("rattaiah™);
Thread.sleep(3*1000);}
catch(InterruptedException iee)

{

System.out.println('gettting innterupted exctpion™);

}

class ThreadDemo

{

public static void main(String[] args)
{

MyThread tl=new MyThread();

MyThread t2=new MyThread();
tl.start();

try

{

tl.joinQ);

}

catch (InterruptedException ie)

{

System.out.printIn("interrupted Exception'™);
}

t2.start();

}

}

Synchronized :-

Synchronized modifier is the modifier applicable for methods but not for classes and
variables.

If a method or a block declared as synchronized then at a time only one Thread is
allowed to operate on the given object.

The main advantage of synchronized modifier is we can resolve data inconsistency
problems.

But the main disadvantage of synchronized modifier is it increases the waiting time
of the Thread and effects performance of the system _.Hence if there is no specific
requirement it is never recommended to use.

The main purpose of this modifier is to reduce the data inconsistence problems.
Daemon threads:-

The threads wchich are executed at background is called daemon threads.

Ex:- garbage collector,ThreadSchedular.default exceptional handler.

Non-daemon threads:-

The threads which are executed fore ground is called non-daemon threads.

Ex :- normal java application.

Collection Frame Work :-

Limitations of arrays:-

1) Array is indexed collection o fixed number of homogeneous data elements

2) Arrays can hold homogeneous data only

3) Once we created an array no chance of increasing o decreasing size of array
Ex :-

Student[] s=new Student[100];

S[0]=new Student();

S[1]=new Student();

S[2]=new Customer();------ compilation error

To overcome the above limitations of array the sun peoples are introduced collections
concept

Collections:-

1) collection can hold both homogeneous data and heterogeneous data
2) collections are growable in nature

3) Memory wise collections are good. Recommended to use.

4) Performance wise collections are not recommended to use .
Collections :-

If we want to represent group of as a single entity then we should go for collection.
In the collection framework we having 9 key interfaces:-

1. Collection

2. List

3. Set

4. SortedSet

5. NavigablaSet

6. Queue
7. Map
8. SotedMap

9. NavigableMap
ArrayList:-
class ArrayList implements List

the collection classes stores only objects but we are passing primitives these
primitives are automatically converts into objects is called autoboxing.

1) Introduced in 1.2 version.

2) ArraylList supports dynamic array that can be grow as needed.it can dynamically
increase and decrease the size.

3) Duplicate objects are allowed.
4) Null insertion is possible.
5) Heterogeneous objects are allowed.

6) The under laying data structure is growable array.

7) Insertion order is preserved.
Ex:-

import java.util.*;

class ArrayListDemo

{

public static void main(String[] args)

{

//creation of ArrayList

ArrayList al=new ArrayList();
System.out.printIn(initial size of the arraylist:"+al_size());
//adding elements to the ArrayList

al.add("a™);

al.add("A™);

al.add('a™);

al .add(null);

al.add(10);

al.add(1,"simon™);

//print the ArraylList elements
System.out.println(al);
System.out.printIn("ArrayList size:"+al.size());
//remove the elements of ArrayList

al .remove(''a™);

System.out.printIn("ArrayList size:"+al_size());

System.out.println(al);

}
}

LinkedList :-

Class LinkedList implements List

1) Introduced in 1.2 v

2) Duplicate objects are allowed

3) Null insertion is possible

4) Heterogeneous objects are allowed

5) The under laying data structure is double linked list.
6) Insertion ode is preserved.

Ex :-

import java.util.*;

class Demo

{

public static void main(String[] args)
{

LinkedList ll=new LinkedList();
System.out.printIn(ll.size());

//add the elements to the LinkedList
1l.add("a™);

11.add(10);

11.add(10.6);

Il.addFirst("ratan™);
1l.addLast("anu™);
System.out.printIn("original content :"+11);
System.out.printIn(ll._size());
//remove elements from LinkedList
Il.remove(10.6);

11.remove(0);

System.out.println("after deletion content :"+11);

System.out.printIn(ll._size());

//remove fTirst and last elements

Il.removeFirst();

Il.removelLast();

System.out.printIn("11 after deletion of first and last :"+11);
//get and set a value

int a=(Integer)ll.get(0);

1l.set(0,a+"madhu™);

System.out.printIn("11 after change:"+11);

1
}

Vector:- (legacy class introduced in 1.0 version)

1) Introduced in 1.0 v legacy classes.

2) Duplicate objects are allowed

3) Null insertion is possible

4) Heterogeneous objects are allowed

5) The under laying data structure is growable array.
6) Insertion order is preserved.

7) Every method present in the Vector is synchronized and hence vector object is
Thread safe.

Ex:-

import java.util.*;

class Test

{

public static void main(String[] args)
{

Vector v=new Vector();

for (int 1=0;i<10 ;i++)

{

v.addElement(i);

}

System.out.printin(v);
v.addElement(''veeresh™);
System.out.println(v);
v.removeElement(0);
System.out.printin(v);
v.clearQ);

System.out.println(v);

}
}

Stack:- (legacy class introduced in 1.0 version)
1) It is a child class of vector

2) Introduce in 1.0 v legacy class

3) It is designed for LIFO(last in fist order)
Ex :-

import java.util.*;

class Test

{

public static void main(String[] args)
{

Stack s=new Stack();
s.push('A™);
s.push(10);
s.push('aaa™);
System.out.println(s);

s.pop(Q);

System.out.println(s);

System.out.println(s.search(A™));

}
}

Cursors:-

The main purpose of the constructors is to retrieve the data from the collection
objects.

There are three types of cursors present in the java language.

1. Enumaration

2. lterator

3. Listlteator

Enumeration :-

1. It is used for only legacy classes(Vector,Stack)

2. Based on above reason the enumeration cursor is not a universal cursor

3. By using this cursor it is possible to read the data only it not possible to
update the data an not possible to delete the data.

4. By using elements method we are getting enumaration object.
Ex:-

import java.util.*;

class Test

{

public static void main(String[] args)
{

Vector v=new Vector();
for (int 1=0;i<10 ;i++)
{

v.addElement(i);

}

System.out.println(v);
Enumeration e=v.elements();
while (e.hasMoreElements())
{

Integer i=(Integer)e.nextElement();
if (i%2==0)

{

System.out.printin(i);

}

}

System.out.printin(v);

}

}

Iterator:-

1. it is universal cursor we can apply any type of collection class.
2. By using this it is possible to read the data and remove the data.
3. We can use iterator() method to get the iterator object.

Ex:-

import java.util.*;

class Test

{

public static void main(String[] args)
{

Vector v=new Vector();
for (int i1=0;i<10 ;i++)
{

v.addElement(i);

}

System.out.println(v);
Iterator itr=v.iterator();
while (itr.hasNext())

{

Integer i=(Integer)itr._next();
if (i%2==0)

{

System.out.printin(i);

}

else

itr.remove();

}

System.out.printin(v);

}

}

Listlterator :-

1. It is applicable for only list type of objects.

2. By using this it is possible to read the data upate the data and delete data also.
3. By using listlterator() method we are getting Llstlterator object

Ex :-

import java.util.*;

class Test

{

public static void main(String[] args)
{

Vector v=new Vector();
for (int 1=0;i<10 ;i++)

{

v.addElement(i);

}
System.out.printin(v);
Listlterator litr=v.listlterator();
while (litr.hasNext())
{

Integer i=(Integer)litr.next();
if (i==0)

{

litr.add("veeru™);

}

if (i==5)

{

litr.set(""sambha™);

}

if (i==9)

{

litr.remove();

}

}
System.out.printin(v);
}

}

HashSet :-
Introduced in 1.2 v

Duplicate objects are not allowed if we are trying to insert duplicate values then we
won’t get any compilation errors an won’t get any Execution errors simply add method
return false.

Null insertion is possible

Heterogeneous objects are allowed

The under laying data structure is hashTable.
Insertion order is not preserved.

Ex :-

import java.util.*;

class Test

{

public static void main(String[] args)
{

HashSet h=new HashSet();

h.add("a™);

h.add("a™);

h.add("'aaaa™);

h.add(10);

h.add(null);

System.out.printin(h);

1
1

LinkedHashSet :-
Introduced in 1.4 v

Duplicate objects are not allowed if we are trying to insert duplicate values then we
wont get any compilation errors an won’t get any Execution errors simply add method
return false.

Null insertion is possible
Heterogeneous objects are allowed
The under laying data structure is linkedList & hashTable.

Insertion order is preserved.

It is a child class of HashSet.
Ex :-

import java.util.*;

class Test

{

public static void main(String[] args)
{

LinkedHashSet h=new LinkedHashSet();
h.add(a™);

h.add(a™);

h.add("aaaa™);

h.add(10);

h.add(null);

System.out.println(h);

1
}

TreeSet :-

1. The underlying data Structure is BalencedTree.

2. Insertion order is not preserved it is based some sorting order.
3. Hetrogeneous data is not allowed.

4. Duplicate objects are not allowed

5. Null insertion is possible only once.

Ex :-

import java.util.*;

class Test

{

public static void main(String[] args)

{

TreeSet t=new TreeSet();

t.add(50);

t.add(20);

t.add(40);

t.add(10);

t.add(30);

System.out.printin(t);

SortedSet sl=t.headSet(50);
System.out.println(sl); //[10,20,30,40]
SortedSet s2=t._tailSet(30);
System.out.printin(s2); //[30,40,50]
SortedSet s3=t.subSet(20,50);
System.out.printin(s3); //[20,30,40]

}

}

Map: -

1. Map is a child interface of collection.

2. Up to know we are working with single object and single value where as in the map
collections we are working with two objects and two elements.

3. The main purpose of the collection is to compare the key value pairs and to
perform necessary operation.

4. The key and value pairs we can call it as map Entry.

5. Both keys and values are objects only.

6. In entire collection keys can’t be duplicated but values can be duplicate.
HashMap :-

1. 1t used to hold key value pairs

2. Underlying data Structure is HashTable.

3. Duplicate keys are not allowed but values can be duplicated.

4. Insertion order is not preserved.
5. Null is allowed for key (only once)and allows for values any number of times.

6. Every method is non-synchronized so multiple Threads are operate at a time hence
permanence is high.

Eg :-

import java.util.*;

class Test

{

public static void main(String[] args)
{

HashMap h=new HashMap();
h.put(*'sambha™,100);
h.put(*“veeru',100);
h.put(*'durga",100);
System.out.println(h);

Set s=h_keySet();
System.out.printin(s);

Collection c=h.values(Q);
System.out.println(c);

Set sl=h.entrySet();
System.out.println(sl);

Iterator itr=sl.iterator();

while (itr.hasNext())

{

Map.Entry ml=(Map.Entry)itr._next();
System.out.println(ml.getkey(Q+"------ "+ml.getvValue());

if (ml.getkey().equals('sambha™))

{

ml.setValue(''gayan TeamLead™);

}
}
System.out.printin(sl);
}
}

HashTable :-

1. It is a legacy class introduced in the 1.0 version.

2. Every method is synchronized hence only one thread is allow to access.
3. The performance of the application is low.

4. Null insertion is not possible if we are trying to insert null values we are
getting NullPointerException.

Ex :-

import java.util.*;

class Test

{

public static void main(String[] args)
{

Hashtable h=new Hashtable();

h_put(*'hyd",100);

h.put("'bang",200);

h.put("pune™,300);

System.out._printin(h);
System.out.println(h.contains(300));//true
System.out.println(h.containsValue(500));//false
Collection c=h.values(Q);

System.out.println(c);

Set cl=h.keySet();

System.out.println(cl);

}

}

LinkedHashMap :-

1. 1t used to hold key value pairs

2. Underlying data Structure is HashTable & LinkedList.

3. Duplicate keys are not allowed but values can be duplicated.
4. Insertion order is preserved.

Eg :-

import java.util.*;

class Test

{

public static void main(String[] args)

{

LinkedHashMap h=new LinkedHashMap();

h.put("'sambha™,100);

h.put(*'veeru",100);

h.put(*'durga",100);

System.out.printin(h);

Set s=h.keySet();

System.out.println(s);

Collection c=h.values();

System.out.println(c);

Set sl=h.entrySet();

System.out.printin(sl);

Iterator itr=sl.iterator();

while (itr.hasNext())

{

Map.Entry ml=(Map.Entry)itr._next();
System.out.println(ml.getkey(Q+"------ "+ml.getValue());
if (ml.getkey().equals('sambha™))

{

ml.setValue('Simon TeamLead™);

}

}

System.out.printin(sl);

}

}

* *xx *hkxk * kX

